Towards Encoding Background Knowledge with Temporal Extent into Neural Networks

نویسندگان

  • Han The Anh
  • Nuno C. Marques
چکیده

Neuro-symbolic integration merges background knowledge and neural networks to provide a more effective learning system. It uses the Core Method as a means to encode rules. However, this method has several drawbacks in dealing with rules that have temporal extent. First, it demands some interface with the world which buffers the input patterns so they can be represented all at once. This imposes a rigid limit on the duration of patterns and further suggests that all input vectors be the same length. These are troublesome in domains where one would like comparable representations for patterns that are of variable length (e.g. language). Second, it does not allow dynamic insertion of rules conveniently. Finally and also most seriously, it cannot encode rules having preconditions satisfied at non-deterministic time points – an important class of rules. This paper presents novel methods for encoding such rules, thereby improves and extends the power of the state-of-the-art neuro-symbolic integration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

معرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی

In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...

متن کامل

A Connectionist Cognitive Model for Temporal Synchronisation and Learning

The importance of the efforts towards integrating the symbolic and connectionist paradigms of artificial intelligence has been widely recognised. Integration may lead to more effective and richer cognitive computational models, and to a better understanding of the processes of artificial intelligence across the field. This paper presents a new model for the representation, computation, and lear...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010